Tag: architecture
Feature Flags: Don't Roll Your Own
Posted by bsstahl on 2023-08-14 and Filed Under: development
In my previous post, I discussed situations where we tend to overvalue visible costs and undervalue more hidden costs. One example of this dynamic is the tendency to want to roll-your-own feature-flagging system.
Feature flags are a powerful tool for controlling the availability and behavior of features in your software. They allow you to turn features on or off at runtime, without deploying new code, and target specific segments of users with different variations of your features. This enables you to experiment, test, and release features faster and safer than ever before.
But feature flags are not something you should implement yourself. Rolling your own feature flags may seem like a simple and cost-effective solution, but it comes with many hidden pitfalls and risks that can undermine your software quality, performance, security, and maintainability. Ultimately, rolling your own feature flag system may end up costing you much more than using an existing product.
We should always have a strong bias against building anything that falls outside of our team's core competencies, but feature flags in particular have their own special set of concerns, especially since, on the surface, it seems like such a simple problem.
Here are some of the specific reasons why you should avoid rolling your own feature flags:
Complexity: Implementing feature flags requires more than just adding some if statements to your code. You need to design a robust system for managing, storing, updating, evaluating, and auditing your feature flags across different environments, platforms, services, and teams. You also need to handle edge cases such as flag dependencies, conflicts, defaults, fallbacks, rollbacks, etc. This adds a lot of complexity and overhead to your codebase that can introduce bugs, errors, inconsistencies, and technical debt.
Performance: Evaluating feature flags at runtime can have a significant impact on your application's performance if not done properly. You need to ensure that your feature flag system is fast, scalable, reliable, resilient, and secure. You also need to optimize your flag evaluation logic for minimal latency and resource consumption. If you roll your own feature flags without proper performance testing and monitoring tools, you may end up slowing down or crashing your application due to excessive network calls, database queries, memory usage, or CPU cycles.
Security: Feature flags can expose sensitive information or functionality that should not be accessible by unauthorized users or attackers. You need to ensure that your feature flag system is secure from both internal and external threats. You also need to comply with any regulatory or legal requirements for data privacy and protection. If you roll your own feature flags without proper security measures and best practices, you may end up leaking confidential data or compromising your application's integrity.
Maintainability: Feature flags are meant to be temporary switches that enable or disable features until they are ready for full release or removal. However, if you roll your own feature flags without proper management tools and processes, you may end up with a large number of stale or unused flags that clutter or pollute your codebase. This makes it harder to understand or modify your code, increases the risk of errors or conflicts, and reduces the readability or testability of your code.
As you can see, rolling your own feature flags is not as easy as it sounds. It requires a lot of time, effort, skill, and discipline to do it well. And even if you manage that nebulous challenge at rollout, you still have to maintain and extend the system for the life of the products that use it.
That's why you should use a feature flag management platform instead. A feature flag management platform provides you with all the tools and services you need to implement and manage feature flags effectively and efficiently.
With a feature flag management platform:
You can create and update feature flags easily using a user-friendly interface or API.
You can target specific segments of users based on various criteria such as location, device type, user behavior, etc.
You can monitor and measure the impact of your features on key metrics such as conversion rates, engagement levels, error rates, etc.
You can control the rollout speed and strategy of your features using various methods such as percentage-based splits, canary releases, blue-green deployments, etc.
You can integrate with various tools such as CI/CD pipelines, testing frameworks, analytics platforms, etc. to streamline your development and delivery workflows.
You can ensure the performance, security, reliability, scalability, of your feature flag system using advanced techniques such as caching, encryption, failover mechanisms, load balancing, etc.
You can manage the lifecycle of your feature flags using best practices such as naming conventions, documentation, flag retirement policies, etc.
A feature flag management platform takes care of all these aspects for you, so you can focus on building and delivering great features for your customers.
There are many feature flag management platforms available in the market, such as LaunchDarkly, Split, Optimizely, Taplytics, etc. Each platform has its own features, pricing, and integrations that you can compare and choose from based on your needs and preferences.
However, regardless of which platform you use, there are some best practices that you should follow when using feature flags. These best practices will help you avoid common pitfalls and maximize the benefits of feature flags for your software development and delivery process.
Here are some of the best practices that you should know:
Use a consistent system for feature flag management: It doesn't matter if you use a feature flag management tool or a custom solution, as long as you have a consistent system for creating, updating, and deleting your feature flags. You should also have a clear ownership and accountability model for each flag, so that you know who is responsible for what.
Set naming conventions for different types of feature flags: You can implement feature flags to achieve many different goals, such as testing, experimenting, releasing, or hiding features. You should use descriptive and meaningful names for your flags that indicate their purpose and scope. You should also use prefixes or suffixes to distinguish between different types of flags, such as release flags, experiment flags, kill switches, etc.
Make it easy to switch a flag on/off: You should be able to turn a feature flag on or off with minimal effort and delay. You should also be able to override or modify a flag's settings at any time without redeploying your code. This will allow you to react quickly and flexibly to any changes or issues that may arise during your feature development or delivery cycle.
Make feature flag settings visible: You should be able to see and monitor the current state and configuration of each feature flag at any given time. You should also be able to track and audit the history and usage of each flag across different environments, platforms, services, and teams. This will help you ensure transparency and traceability of your feature development and delivery process.
Clean up obsolete flags: You should remove any feature flags that are no longer needed or used as soon as possible. This will prevent cluttering or polluting your codebase with unnecessary or outdated code paths that can increase complexity or introduce errors or conflicts¹⁶.
Some additional recommendations are:
Avoid dependencies between flags: You should avoid creating complex dependencies or interactions between different feature flags that can make it hard to understand or predict their behavior or impact. You should also avoid nesting or chaining multiple flags within each other that can increase latency or resource consumption.
Use feature switches to avoid code branches: You should use simple boolean expressions to evaluate your feature flags rather than creating multiple code branches with if/else statements. This will reduce code duplication and improve readability and testability of your code.
Use feature flags for small test releases: You should use feature flags to release small batches of features incrementally rather than releasing large groups of features altogether. This will allow you to test and validate your features with real users in production without affecting everyone at once. It will also enable you to roll back or fix any issues quickly if something goes wrong.
By following these best practices, you can leverage the power of feature flags without compromising on quality, performance, security, or maintainability.
Some Open Source Feature Flag Systems
Yes, there are some open source projects that support feature flag management. For example:
GrowthBook: GrowthBook is an open source feature management and experimentation platform that helps your engineering team adopt an experimentation culture. It enables you to create gradual or canary releases with user targeting, run A/B tests, track key metrics, and integrate with various data sources.
Flagsmith: Flagsmith is an open source feature flag and remote config service that makes it easy to create and manage features flags across web, mobile, and server side applications. It allows you to control feature access, segment users, toggle features on/off, and customize your app behavior without redeploying your code.
Unleash: Unleash is an open source feature flag management system that helps you deploy new features at high speed. It lets you decouple deployment from release, run experiments easily, scale as your business grows, and integrate with various tools and platforms.
These are just some examples of open source feature flag management projects. There may be others that suit your needs better.
Feature flags are an essential tool for modern software development and delivery. They enable you to deliver faster, safer, and better features for your customers while reducing risk and cost. But don't try to roll your own feature flags unless you have a good reason and enough resources to do so. Instead, use a professional feature flag management platform that provides you with all the tools and services you need to implement and manage feature flags effectively and efficiently.
Disclaimer: My teams use LaunchDarkly for feature-flagging but I am not affiliated with that product or company in any way. I am also not associated with any similar product or company that makes such a product and have not received, nor will I receive, any compensation of any type, either direct or indirect, for this article.
Tags: architecture coding-practices
Consider Quality Before Cost in Application Development
Posted by bsstahl on 2023-08-04 and Filed Under: development
Assessing the costs associated with using a specific tool is usually more straightforward than evaluating the less tangible costs related to an application's life-cycle, such as those tied to quality. This can result in an excessive focus on cost optimization, potentially overshadowing vital factors like reliability and maintainability.
As an example, consider a solution that uses a Cosmos DB instance. It is easy to determine how much it costs to use that resource, since the Azure Portal gives us good estimates up-front, and insights as we go. It is much more difficult to determine how much it would cost to build the same functionality without the use of that Cosmos DB instance, and what the scalability and maintainability impacts of that decision would be.
In this article, we will consider a set of high-level guidelines that can help you identify when to consider costs during the development process. By following these guidelines, you can make it more likely that your dev team accurately prioritizes all aspects of the application without falling into the trap of over-valuing easily measurable costs.
1. Focus on Quality First
As a developer, your primary objective should be to create applications that meet the customers needs with the desired performance, reliability, scalability, and maintainability characteristics. If we can meet a user need using a pre-packaged solution such as Cosmos DB or MongoDB, we should generally do so. While there are some appropriate considerations regarding cost here, the primary focus of the development team should be on quality.
Using Cosmos DB as an example, we can leverage its global distribution, low-latency, and high-throughput capabilities to build applications that cater to a wide range of user needs. If Cosmos DB solves the current problem effectively, we probably shouldn't even consider building without it or an equivalent tool, simply for cost savings. An additional part of that calculus, whether or not we consider the use of that tool a best-practice in our organization, falls under item #2 below.
2. Employ Best Practices and Expert Advice
During the development of an application, it's essential to follow best practices and consult experts to identify areas for improvement or cost-effectiveness without compromising quality. Since most problems fall into a type that has already been solved many times, the ideal circumstance is that there is already a best-practice for solving problems of the type you are currently facing. If your organization has these best-practices or best-of-breed tools identified, there is usually no need to break-out of that box.
In the context of Cosmos DB, you can refer to Microsoft's performance and optimization guidelines or consult with your own DBAs to ensure efficient partitioning, indexing, and query optimization. For instance, you can seek advice on choosing the appropriate partition key to ensure even data distribution and avoid hot-spots. Additionally, you can discuss the optimal indexing policy to balance the trade-off between query performance and indexing cost, and define the best time-to-live (TTL) for data elements that balance the need for historical data against query costs. If you are seeing an uneven distribution of data leading to higher consumption of RU/s, you can look at adjusting the partition key. If you need to query data in several different ways, you might consider using the Materialized View pattern to make the same data queryable using different partitioning strategies. All of these changes however have their own implementation costs, and potentially other costs, that should be considered.
3. Establish Cost Thresholds
Defining acceptable cost limits for different aspects of your application ensures that costs don't spiral out of control while maintaining focus on quality. In the case of Cosmos DB, you can set cost thresholds for throughput (RU/s), storage, and data transfer. For instance, you can define a maximum monthly budget for provisioned throughput based on the expected workload and adjust it as needed. This can help you monitor and control costs without affecting the application's performance. You can also setup alerts to notify you when the costs exceed the defined thresholds, giving you an opportunity to investigate and take corrective action.
Limits can be defined similarly to the way any other SLA is defined, generally by looking at existing systems and determining what normal looks like. This mechanism has the added benefit of treating costs in the same way as other metrics, making it no more or less important than throughput, latency, or uptime.
4. Integrate Cost Checks into Code Reviews and Monitoring
A common strategy for managing costs is to introduce another ceremony specifically related to spend, such as a periodic cost review. Instead of creating another mandated set of meetings that tend to shift the focus away from quality, consider incorporating cost-related checks into your existing code review and monitoring processes, so that cost becomes just one term in the overall equation:
- Code review integration: During code review sessions, include cost-related best practices along with other quality checks. Encourage developers to highlight any potential cost inefficiencies or violations of best practices that may impact the application's costs in the same way as they highlight other risk factors. Look for circumstances where the use of resources is unusual or wasteful.
- Utilize tools for cost analysis: Leverage tools and extensions that can help you analyze and estimate costs within your development environment. For example, you can use Azure Cost Management tools to gain insights into your Cosmos DB usage patterns and costs. Integrating these tools into your development process can help developers become more aware of the cost implications of their code changes, and act in a similar manner to quality analysis tools, making them just another piece of the overall puzzle, instead of a special-case for costs.
- Include cost-related SLOs: As part of your performance monitoring, include cost-related SLIs and SLOs, such as cost per request or cost per user, alongside other important metrics like throughput and latency. This will help you keep an eye on costs without overemphasizing them and ensure they are considered alongside other crucial aspects of your application.
5. Optimize Only When Necessary
If cost inefficiencies are identified during code reviews or monitoring, assess the trade-offs and determine if optimization is necessary without compromising the application's quality. If cost targets are being exceeded by a small amount, and are not climbing rapidly, it may be much cheaper to simply adjust the target. If target costs are being exceeded by an order-of-magnitude, or if they are rising rapidly, that's when it probably makes sense to address the issues. There may be other circumstances where it is apporpriate to prioritize these types of costs, but always be aware that there are costs to making these changes too, and they may not be as obvious as those that are easily measured.
Conclusion
Balancing quality and cost in application development is crucial for building successful applications. By focusing on quality first, employing best practices, establishing cost thresholds, and integrating cost checks into your existing code review and monitoring processes, you can create an environment that considers all costs of application development, without overemphasizing those that are easy to measure.
Tags: architecture coding-practices reliability
Microservices: Size Doesn't Matter, Reliability Does
Posted by bsstahl on 2023-02-20 and Filed Under: development
There are conflicting opinions among architects about how many microservices a distributed system should have, and the size of those services. Some may say that a particular design has too many microservices, and that it should be consolidated into fewer, larger services to reduce deployment and operational complexity. Others may say that the same design doesn't have enough microservices, and that it should be broken-down into smaller, more granular services to reduce code complexity and improve team agility. Aside from the always true and rarely helpful "it depends...", is there good guidance on the subject?
The truth is, the number and size of microservices is not a measure of quality or performance unto itself, it is a design decision based on one primary characteristic, Reliability. As such, there is a simple rule guiding the creation of services, but it isn't based on the size or quantity of services. The rule is based entirely on how much work a service does.
After security, reliability is the most important attribute of any system, because it affects the satisfaction of both the users and developers, as well as the productivity and agility of the development and support teams. A reliable system has the following characteristics:
- It performs its duties as expected
- It has minimal failures where it has to report to the user that it is unable to perform its duties
- It has minimal downtime when it cannot be reached and opportunities may be lost
- It recovers itself automatically when outages do occur, without data loss
Having reliable systems means that your support engineers won't be constantly woken-up in the middle of the night to deal with outages, and your customers will remain satisfied with the quality of the product.
How do we build reliable systems with microservices?
The key to building reliable systems using microservices is to follow one simple rule: avoid dual-writes. A dual-write is when a service makes more than one change to system state within an execution context. Dual-writes are the enemy of reliability, because they create the risk of inconsistency, data loss, and data corruption.
For example, a web API that updates a database and sends a message to a queue during the execution of a single web request is performing a dual-write since it is making two different changes to the state of the system, and both of the changes are expected to occur reliably. If one of the writes succeeds and the other fails, the system state becomes out of sync and system behavior becomes unpredictable. The errors created when these types of failures occur are often hard to find and remediate because they can present very differently depending on the part of the process being executed when the failure happened.
The best-practice is to allow microservices to perform idempotent operations like database reads as often as they need, but to only write data once. An atomic update to a database is an example of such a write, regardless of how many tables or collections are updated during that process. In this way, we can keep the state of each service consistent, and the system behavior deterministic. If the process fails even part-way through, we know how to recover, and can often do it automatically.
Building this type of system does require a change in how we design our services. In the past, it was very common for us to make multiple changes to a system's state, especially inside a monolithic application. To remain reliable, we need to leverage tools like Change Data Capture (CDC), which is available in most modern database systems, or the Transactional Outbox Pattern so that we can write our data once, and have that update trigger other activities downstream.
Since microservices are sized to avoid dual-writes, the number of microservices in a system is determined by what they do and how they interact. The number of microservices is not a fixed or arbitrary number, but a result of the system design and the business needs. By following the rule of avoiding dual-writes, you can size your microservices appropriately, and achieve a system that is scalable and adaptable, but most of all, reliable. Of course, this practice alone will not guarantee the reliability of your systems, but it will make reliability possible, and is the best guideline I've found for sizing microservices.
For more detail on how to avoid the Dual-Writes Anti-Pattern, please see my article from December 2022 on The Execution Context.
Tags: architecture coding-practices event-driven microservices reliability soa
Like a River
Posted by bsstahl on 2023-02-06 and Filed Under: development
We all understand to some degree, that the metaphor comparing the design and construction of software to that of a building is flawed at best. That isn't to say it's useless of course, but it seems to fail in at least one critical way; it doesn't take into account that creating software should be solving a business problem that has never been solved before. Sure, there are patterns and tools that can help us with technical problems similar to those that have been solved in the past, but we should not be solving the same business problem over and over again. If we are, we are doing something very wrong. Since our software cannot simply follow long-established plans and procedures, and can evolve very rapidly, even during construction, the over-simplification of our processes by excluding the innovation and problem-solving aspects of our craft, feels rather dangerous.
Like Constructing a Building
It seems to me that by making the comparison to building construction, we are over-emphasizing the scientific aspects of software engineering, and under-emphasizing the artistic ones. That is, we don't put nearly enough value on innovation such as designing abstractions for testability and extensibility. We also don't emphasize enough the need to understand the distinct challenges of our particular problem domain, and how the solution to a similar problem in a different domain may focus on the wrong features of the problem. As an example, let's take a workforce scheduling tool. The process of scheduling baristas at a neighborhood coffee shop is fundamentally similar to one scheduling pilots to fly for a small commercial airline. However, I probably don't have to work too hard to convince you that the two problems have very different characteristics when it comes to determining the best solutions. In this case, the distinctions are fairly obvious, but in many cases they are not.
Where the architecture metaphor makes the most sense to me is in the user-facing aspects of both constructions. The physical aesthetics, as well as the experience humans have in their interactions with the features of the design are critical in both scenarios, and in both cases will cause real problems if ignored or added as an afterthought. Perhaps this is why the architecture metaphor has become so prevalent in that it is easy to see the similarities between the aesthetics and user-experience of buildings and software, even for a non-technical audience. However, most software built today has a much cleaner separation of concerns than software built when this metaphor was becoming popular in the 1960s and 70s, rendering it mostly obsolete for the vast majority of our systems and sub-systems.
When we consider more technical challenges such as design for reliability and resiliency, the construction metaphor fails almost completely. Reliability is far more important in the creation of buildings than it is in most software projects, and often very different. While it is never ok for the structure of a building to fail, it can be perfectly fine, and even expected, for most aspects of a software system to fail occasionally, as long as those failures are well-handled. Designing these mechanisms is a much more flexible and creative process in building software, and requires a large degree of innovation to solve these problems in ways that work for each different problem domain. Even though the two problems can share the same name in software and building construction, and have some similar characteristics, they are ultimately very different problems and should be seen as such. The key metaphors we use to describe our tasks should reflect these differences.
Like a River
For more than a decade now, I've been fascinated by Grady Booch's suggestion that a more apt metaphor for the structure and evolution of the software within an enterprise is that of a river and its surrounding ecosystem G. Booch, "Like a River" in IEEE Software, vol. 26, no. 03, pp. 10-11, 2009. In this abstraction, bank-to-bank slices represent the current state of our systems, while upstream-downstream sections represent changes over time. The width and depth of the river represent the breadth and depth of the structures involved, while the speed of the water, and the differences in speed between the surface (UI) and depths (back-end) represent the speed of changes within those sub-systems.
The life cycle of a software-intensive system is like a river, and we, as developers, are but captains of the boats that ply its waters and dredge its channels. - Grady Booch
I will not go into more detail on Booch's analogy, since it will be far better to read it for yourself, or hear it in his own voice. I will however point out that, in his model, Software Engineers are "…captains of the boats that ply the waters and dredge the channels". It is in this context, that I find the river metaphor most satisfying.
As engineers, we:
- Navigate and direct the flow of software development, just as captains steer their boats ina particular direction.
- Make decisions and take action to keep the development process moving forward, similar to how captains navigate their boats through obstacles and challenges.
- Maintain a highly-functional anomaly detection and early-warning system to alert us of upcoming obstacles such as attacks and system outages, similar to the way captains use sonar to detect underwater obstacles and inspections by their crew, to give them useful warnings.
- Use ingenuity and skill, while falling back on first-principles, to know when to add abstractions or try something new, in the same way that captains follow the rules of seamanship, but know when to take evasive or unusual action to protect their charge.
- Maintain a good understanding of the individual components of the software, as well as the broader architecture and how each component fits within the system, just as captains need to know both the river and its channels, and the details of the boat on which they travel.
- Are responsible for ensuring the software is delivered on time and within budget, similar to how captains ensure their boats reach their destination on schedule.
- May be acting on but one small section at a time of the broader ecosystem. That is, an engineer may be working on a single feature, and make decisions on how that element is implemented, while other engineers act similarly on other features. This is akin to the way many captains may navigate the same waters simultaneously on different ships, and must make decisions that take into account the presence, activities and needs of the others.
This metaphor, in my opinion, does a much better job of identifying the critical nature of the software developer in the design of our software than then that of the creation of a building structure. It states that our developers are not merely building walls, but they are piloting ships, often through difficult waters that have never previously been charted. These are not laborers, but knowledge-workers whose skills and expertise need to be valued and depended on.
Unfortunately this metaphor, like all others, is imperfect. There are a number of elements of software engineering where no reasonable analog exists into the world of a riverboat captain. One example is the practice of pair or mob programming. I don't recall ever hearing of any instances where a pair or group of ships captains worked collaboratively, and on equal footing, to operate a single ship. Likewise, the converse is also true. I know of no circumstances in software engineering where split-second decisions can have life-or-death consequences. That said, I think the captain metaphor does a far better job of describing the skill and ingenuity required to be a software engineer than that of building construction.
To be very clear, I am not saying that the role of a construction architect, or even construction worker, doesn't require skill and ingenuity, quite the contrary. I am suggesting that the types of skills and the manner of ingenuity required to construct a building, doesn't translate well in metaphor to that required of a software engineer, especially to those who are likely to be unskilled in both areas. It is often these very people, our management and leadership, whom these metaphors are intended to inform. Thus, the construction metaphor represents the job of a software developer ineffectively.
Conclusion
The comparisons of creating software to creating an edifice is not going away any time soon. Regardless of its efficacy, this model has come to be part of our corporate lexicon and will likely remain so for the foreseeable future. Even the title of "Software Architect" is extremely prevalent in our culture, a title which I have held, and a role that I have enjoyed for many years now. That said, it could only benefit our craft to make more clear the ways in which that metaphor fails. This clarity would benefit not just the non-technical among us who have little basis to judge our actions aside from these metaphors, but also us as engineers. It is far too easy for anyone to start to view developers as mere bricklayers, rather than the ships captains we are. This is especially true when generations of engineers have been brought up on and trained on the architecture metaphor. If they think of themselves as just workers of limited, albeit currently valuable skill, it will make it much harder for them to challenge those things in our culture that need to be challenged, and to prevent the use of our technologies for nefarious purposes.
Tags: architecture corporate culture enterprise ethics opinion
Microservices - Not Just About Scalability
Posted by bsstahl on 2023-01-30 and Filed Under: development
Scalability is an important feature of microservices and event-driven architectures, however it is only one of the many benefits these types of architectures provide. Event-driven designs create systems with high availability and fault tolerance, as well as improvements for the development teams such as flexibility in technology choices and the ability to subdivide tasks better. These features can help make systems more robust and reliable, and have a great impact on development team satisfaction. It is important to consider these types of architectures not just for systems that need to scale to a high degree, but for any system where reliability or complexity are a concern.
The reliability of microservices come from the fact that they break-down monolithic applications into smaller, independently deployable services. When implemented properly this approach allows for the isolation of failures, where the impact of a failure in one service can be limited to that service and its consumers, rather than cascading throughout the entire system. Additionally, microservice architectures enable much easier rollbacks, where if a new service version has a bug, it can be rolled back to a previous version without affecting other services. Event-driven approaches also decouple services by communicating through events rather than direct calls, making it easier to change or replace them without affecting other services. Perhaps most importantly, microservice architectures help reliability by avoiding dual-writes. Ensuring that our services make at most one state change per execution context allows us to avoid the very painful inconsistencies that can occur when data is written to multiple locations simultaneously and these updates are only partially successful.
When asynchronous eventing is used rather than request-response messages, these systems are further decoupled in time, improving fault-tolerance and allowing the systems to self-heal from failures in downstream dependencies. Microservices also enable fault-tolerance in our services by making it possible for some of our services to be idempotent or even fully stateless. Idempotent services can be called repeatedly without additional side-effects, making it easy to recover from failures that occur during our processes.
Finally, microservices improve the development and support process by enabling modularity and allowing each team to use the tools and technologies they prefer. Teams can work on smaller, independent parts of the system, reducing coordination overhead and enabling faster time-to-market for new features and improvements. Each service can be deployed and managed separately, making it easier to manage resource usage and address problems as they arise. These architectures provide greater flexibility and agility, allowing teams to focus on delivering value to the business without being bogged down by the constraints of a monolithic architecture.
While it is true that most systems won't ever need to scale to the point that they require a microservices architecture, many of these same systems do need the reliability and self-healing capabilities modern architectures provide. Additionally, everyone wants to work on a development team that is efficient, accomplishes their goals, and doesn't constantly force them to wake up in the middle of the night to handle support issues.
If you have avoided using event-driven microservices because scalability isn't one of the key features of your application, I encourage you to explore the many other benefits of these architectures.
Tags: architecture coding-practices event-driven microservices reliability soa
Critical Questions to Ask Your Team About Microservices
Posted by bsstahl on 2023-01-23 and Filed Under: development
Over the last 6 weeks we have discussed the creation, maintenance and operations of microservices and event-driven systems. We explored different conversations that development teams should have prior to working with these types of architectures. Asking the questions we outlined, and answering as many of them as are appropriate, will help teams determine which architectural patterns are best for them, and assist in building their systems and processes in a reliable and supportable way. These conversations are known as "The Critical C's of Microservices", and each is detailed individually in its own article.
The "Critical C's" are: Context, Consistency, Contract, Chaos, Competencies and Coalescence. For easy reference, I have aggregated all of the key elements of each conversation in this article. For details about why each is important, please consult the article specific to that topic.
There is also a Critical C's of Microservices website that includes the same information as in these articles. This site will be kept up-to-date as the guidance evolves.
Questions about Context
Development teams should have conversations around Context that are primarily focused around the tools and techniques that they intend to use to avoid the Dual-Writes Anti-Pattern. These conversations should include answering questions like:
- What database technologies will we use and how can we leverage these tools to create downstream events based on changes to the database state?
- Which of our services are currently idempotent and which ones could reasonably made so? How can we leverage our idempotent services to improve system reliability?
- Do we have any services right now that contain business processes implemented in a less-reliable way? If so, pulling this functionality out into their own microservices might be a good starting point for decomposition.
- What processes will we as a development team implement to track and manage the technical debt of having business processes implemented in a less-reliable way?
- What processes will we implement to be sure that any future less-reliable implementations of business functionality are made with consideration and understanding of the debt being created and a plan to pay it off.
- What processes will we implement to be sure that any existing or future less-reliable implementations of business functionality are documented, understood by, and prioritized by the business process owners.
Questions about Consistency
Development teams should have conversations around Consistency that are primarily focused around making certain that the system is assumed to be eventually consistency throughout. These conversations should include answering questions like:
- What patterns and tools will we use to create systems that support reliable, eventually consistent operations?
- How will we identify existing areas where higher-levels of consistency have been wedged-in and should be removed?
- How will we prevent future demands for higher-levels of consistency, either explicit or assumed, to creep in to our systems?
- How will we identify when there are unusual or unacceptable delays in the system reaching a consistent state?
- How will we communicate the status of the system and any delays in reaching a consistent state to the relevant stakeholders?
Questions about Contract
Development teams should have conversations around Contract that are primarily focused around creating processes that define any integration contracts for both upstream and downstream services, and serve to defend their internal data representations against any external consumers. These conversations should include answering questions like:
- How will we isolate our internal data representations from those of our downstream consumers?
- What types of compatibility guarantees are our tools and practices capable of providing?
- What procedures should we have in place to monitor incoming and outgoing contracts for compatibility?
- What should our procedures look like for making a change to a stream that has downstream consumers?
- How can we leverage upstream messaging contracts to further reduce the coupling of our systems to our upstream dependencies?
Questions about Chaos
Development teams should have conversations around Chaos that are primarily focused around procedures for identifying and remediating possible failure points in the application. These conversations should include answering questions like:
- How will we evaluate potential sources of failures in our systems before they are built?
- How will we handle the inability to reach a dependency such as a database?
- How will we handle duplicate messages sent from our upstream data sources?
- How will we handle messages sent out-of-order from our upstream data sources?
- How will we expose possible sources of failures during any pre-deployment testing?
- How will we expose possible sources of failures in the production environment before they occur for users?
- How will we identify errors that occur for users within production?
- How will we prioritize changes to the system based on the results of these experiments?
Questions about Competencies
Development teams should have conversations around Competencies that are primarily focused around what systems, sub-systems, and components should be built, which should be installed off-the-shelf, and what libraries or infrastructure capabilities should be utilized. These conversations should include answering questions like:
- What are our core competencies?
- How do we identify "build vs. buy" opportunities?
- How do we make "build vs. buy" decisions on needed systems?
- How do we identify cross-cutting concerns and infrastructure capabilites that can be leveraged?
- How do we determine which libraries or infrastructure components will be utilized?
- How do we manage the versioning of utilized components, especially in regard to security updates?
- How do we document our decisions for later review?
Questions about Coalescence
Development teams should have conversations around Coalescence that are primarily focused around brining critical information about the operation of our systems together for easy access. These conversations should include answering questions like:
- What is our mechanism for deployment and system verification?
- How will we identify, as quickly as possible, when a deployment has had a negative impact on our system?
- Are there tests that can validate the operation of the system end-to-end?
- How will we surface the status of any deployment and system verification tests?
- What is our mechanism for logging/traceability within our system?
- How will we coalesce our logs from the various services within the system?
- How will we know if there are anomalies in our logs?
- Are there additional identifiers we need to add to allow traceability?
- Are there log queries that, if enabled, might provide additional support during an outage?
- Are there ways to increase the level of logging when needed to provide additional information and can this be done wholistically on the system?
- How will we expose SLIs and other metrics so they are available when needed?
- How will we know when there are anomalies in our metrics?
- What are the metrics that would be needed in an outage and how will we surface those for easy access?
- Are there additional metrics that, if enabled, might provide additional support during an outage?
- Are there ways to perform ad-hoc queries against SLIs and metrics to provide additional insight in an outage?
- How will we identify the status of dependencies so we can understand when our systems are reacting to downstream anomalies?
- How will we surface dependency status for easy access during an outage?
- Are there metrics we can surface for our dependencies that might help during an outage?
Tags: agile antipattern apache-kafka api apps architecture aspdotnet ci_cd coding-practices coupling event-driven microservices soa
The Critical C's of Microservices - Coalescence
Posted by bsstahl on 2023-01-16 and Filed Under: development
"The Critical C's of Microservices" are a series of conversations that development teams should have around building event-driven or other microservice based architectures. These topics will help teams determine which architectural patterns are best for them, and assist in building their systems and processes in a reliable and supportable way.
The "Critical C's" are: Context, Consistency, Contract, Chaos, Competencies and Coalescence. Each of these topics has been covered in detail in this series of 6 articles. The first article of the 6 was on the subject of Context. This is the final article in the series, and covers the topic of Coalescence.
Coalescence
The use of Microservices reduces the complexity of our services in many ways, however it also adds complexity when it comes to deployment and operations. More services mean more deployments, even as each of those deployments is smaller and more isolated. Additionally, they can be harder on operations and support teams since there can be many more places to go when you need to find information. Ideally, we would coalesce all of the necessary information to operate and troubleshoot our systems in a single pane-of-glass so that our operations and support engineers don't have to search for information in a crisis.
Deployment and system verification testing can help us identify when there are problems at any point in our system and give us insight into what the problems might be and what caused them. Tests run immediately after any deployment can help identify when a particular deployment has caused a problem so it can be addressed quickly. Likewise, ongoing system verification tests can give early indications of problems irrespective of the cause. Getting information about the results of these tests quickly and easily into the hands of the engineers that can act on them can reduce costs and prevent outages.
Logging and traceability is generally considered a solved problem, so long as it is used effectively. We need to setup our systems to make the best use of our distributed logging systems. This often means adding a correlation identifier alongside various request and causation ids to make it easy to trace requests through the system. We also need to be able to monitor and surface our logs so that unusual activity can be recognized and acted on as quickly as possible.
Service Level Indicators (SLIs) and other metrics can provide key insights into the operations of our systems, even if no unusual activity is seen within our logs. Knowing what operational metrics suggest there might be problems within our systems, and monitoring changes to those metrics for both our services and our dependencies can help identify, troubleshoot and even prevent outages. Surfacing those metrics for easy access can give our support and operations engineers the tools they need to do their jobs effectively.
Goals of the Conversation
Development teams should have conversations around Coalescence that are primarily focused around brining critical information about the operation of our systems together for easy access. These conversations should include answering questions like:
- What is our mechanism for deployment and system verification?
- How will we identify, as quickly as possible, when a deployment has had a negative impact on our system?
- Are there tests that can validate the operation of the system end-to-end?
- How will we surface the status of any deployment and system verification tests?
- What is our mechanism for logging/traceability within our system?
- How will we coalesce our logs from the various services within the system?
- How will we know if there are anomalies in our logs?
- Are there additional identifiers we need to add to allow traceability?
- Are there log queries that, if enabled, might provide additional support during an outage?
- Are there ways to increase the level of logging when needed to provide additional information and can this be done wholistically on the system?
- How will we expose SLIs and other metrics so they are available when needed?
- How will we know when there are anomalies in our metrics?
- What are the metrics that would be needed in an outage and how will we surface those for easy access?
- Are there additional metrics that, if enabled, might provide additional support during an outage?
- Are there ways to perform ad-hoc queries against SLIs and metrics to provide additional insight in an outage?
- How will we identify the status of dependencies so we can understand when our systems are reacting to downstream anomalies?
- How will we surface dependency status for easy access during an outage?
- Are there metrics we can surface for our dependencies that might help during an outage?
Tags: agile antipattern apache-kafka api apps architecture aspdotnet ci_cd coding-practices coupling event-driven microservices soa
The Critical C's of Microservices - Competencies
Posted by bsstahl on 2023-01-09 and Filed Under: development
"The Critical C's of Microservices" are a series of conversations that development teams should have around building event-driven or other microservice based architectures. These topics will help teams determine which architectural patterns are best for them, and assist in building their systems and processes in a reliable and supportable way.
The "Critical C's" are: Context, Consistency, Contract, Chaos, Competencies and Coalescence. Each of these topics will be covered in detail in this series of articles. The first article of the 6 was on the subject of Context. This is article 5 of the series, and covers the topic of Competencies.
Competencies
It is our responsibility as engineers to spend our limited resources on those things that give the companies we are building for a competitive advantage in the market. This means limiting our software builds to areas where we can differentiate that company from others. Not every situation requires us to build a custom solution, and even when we do, there is usually no need for us to build every component of that system.
If the problem we are solving is a common one that many companies deal with, and our solution does not give us a competitive advantage over those other companies, we are probably better off using an off-the-shelf product, whether that is a commercial (COTS) product, or a Free or Open-Source one (FOSS). Software we build should be unique to the company it is being built for, and provide that company with a competitive advantage. There is no need for us to build another Customer Relationship Manager (CRM) or Accounting system since these systems implement solutions to solved problemns that are generally solved in the same way by everyone. We should only build custom solutions if we are doing something that has never been done before or we need to do things in a way that is different from everyone else and can't be done using off-the-shelf systems.
We should also only be building custom software when the problem being solved is part of our company's core competencies. If we are doing this work for a company that builds widgets, it is unlikely, though not impossible, that building a custom solution for getting parts needed to build the widgets will provide that company with a competitive advantage. We are probably better off if we focus our efforts on software to help make the widgets in ways that are better, faster or cheaper.
If our "build vs. buy" decision is to build a custom solution, there are likely to be opportunities within those systems to use pre-existing capabilities rather than writing everything from scratch. For example, many cross-cutting concerns within our applications have libraries that support them very effectively. We should not be coding our own implementations for things like logging, configuration and security. Likewise, there are many capabilities that already exist in our infrastructure that we should take advantage of. Encryption, which is often a capability of the operating system, is one that springs to mind. We should certainly never "roll-our-own" for more complex infrastructure features like Replication or Change Data Capture, but might even want to consider avoiding rebuilding infrastructure capabilities that we more commonly build. An example of this might be if we would typically build a Web API for our systems, we might consider exposing the API's of our backing infrastructure components instead, properly isolated and secured of course, perhaps via an API Management component.
Goals of the Conversation
Development teams should have conversations around Competencies that are primarily focused around what systems, sub-systems, and components should be built, which should be installed off-the-shelf, and what libraries or infrastructure capabilities should be utilized. These conversations should include answering questions like:
- What are our core competencies?
- How do we identify "build vs. buy" opportunities?
- How do we make "build vs. buy" decisions on needed systems?
- How do we identify cross-cutting concerns and infrastructure capabilites that can be leveraged?
- How do we determine which libraries or infrastructure components will be utilized?
- How do we manage the versioning of utilized components, especially in regard to security updates?
- How do we document our decisions for later review?
Next Up - Coalescence
In the final article of this series we will look at Coalescence and how we should work to bring all of the data together for our operations & support engineers.
Tags: agile antipattern apache-kafka api apps architecture aspdotnet ci_cd coding-practices coupling event-driven microservices soa
The Critical C's of Microservices - Chaos
Posted by bsstahl on 2023-01-02 and Filed Under: development
"The Critical C's of Microservices" are a series of conversations that development teams should have around building event-driven or other microservice based architectures. These topics will help teams determine which architectural patterns are best for them, and assist in building their systems and processes in a reliable and supportable way.
The "Critical C's" are: Context, Consistency, Contract, Chaos, Competencies and Coalescence. Each of these topics will be covered in detail in this series of articles. The first article of the 6 was on the subject of Context. This is article 4 of the series, and covers the topic of Chaos.
Chaos
One of the Fallacies of Distributed Computing is that the network is reliable. We should have similarly low expectations for the reliability of all of the infrastructure on which our services depend. Networks will segment, commodity servers and drives will fail, containers and operating systems will become unstable. In other words, our software will have errors during operation, no matter how resilient we attempt to make it. We need to embrace the fact that failures will occur in our software, and will do so at random times and often in unpredictable ways.
If we are to build systems that don't require our constant attention, especially during off-hours, we need to be able to identify what happens when failures occur, and design our systems in ways that will allow them to heal automatically once the problem is corrected.
To start this process, I recommend playing "what-if" games using diagrams of the system. Walk through the components of the system, and how the data flows through it, identifying each place where a failure could occur. Then, in each area where failures could happen, attempt to define the possible failure modes and explore what the impact of those failures might be. This kind of "virtual" Chaos Engineering is certainly no substitute for actual experimentation and testing, but is a good starting point for more in-depth analysis. It also can be very valuable in helping to understand the system and to produce more hardened services in the future.
Thought experiments are useful, but you cannot really know how a system will respond to different types of failures until you have those failures in production. Historically, such "tests" have occurred at random, at the whim of the infrastructure, and usually at the worst possible time. Instead of leaving these things to chance, tools like Chaos Monkey can be used to simulate failures in production, and can be configured to create these failures during times where the appropriate support engineers are available and ready to respond if necessary. This way, we can see if our systems respond as we expect, and more importantly, heal themselves as we expect.
Even if you're not ready to jump into using automated experimentation tools in production just yet, a lot can be learned from using feature-flags and changing service behaviors in a more controlled manner as a starting point. This might involve a flag that can be set to cause an API method to return an error response, either as a hard failure, or during random requests for a period of time. Perhaps a switch could be set to stop a service from picking-up asynchronous messages from a queue or topic. Of course, these flags can only be placed in code we control, so we can't test failures of dependencies like databases and other infrastructure components in this way. For that, we'll need more involved testing methods.
Regardless of how we test our systems, it is important that we do everything we can to build systems that will heal themselves without the need for us to intervene every time a failure occurs. As a result, I highly recommend using asynchronous messaging patterns whenever possible. The asynchrony of these tools allow our services to be "temporally decoupled" from their dependencies. As a result, if a container fails and is restarted by Kubernetes, any message in process is rolled-back onto the queue or topic, and the system can pick right up where it left off.
Goals of the Conversation
Development teams should have conversations around Chaos that are primarily focused around procedures for identifying and remediating possible failure points in the application. These conversations should include answering questions like:
- How will we evaluate potential sources of failures in our systems before they are built?
- How will we handle the inability to reach a dependency such as a database?
- How will we handle duplicate messages sent from our upstream data sources?
- How will we handle messages sent out-of-order from our upstream data sources?
- How will we expose possible sources of failures during any pre-deployment testing?
- How will we expose possible sources of failures in the production environment before they occur for users?
- How will we identify errors that occur for users within production?
- How will we prioritize changes to the system based on the results of these experiments?
Next Up - Competencies
In the next article of this series we will look at Competencies and how we should focus at least as much on what we build as how we build it.
Tags: agile antipattern apache-kafka api apps architecture aspdotnet ci_cd coding-practices coupling event-driven microservices soa
The Critical C's of Microservices - Contract
Posted by bsstahl on 2022-12-26 and Filed Under: development
"The Critical C's of Microservices" are a series of conversations that development teams should have around building event-driven or other microservice based architectures. These topics will help teams determine which architectural patterns are best for them, and assist in building their systems and processes in a reliable and supportable way.
The "Critical C's" are: Context, Consistency, Contract, Chaos, Competencies and Coalescence. Each of these topics will be covered in detail in this series of articles. The first article of the 6 was on the subject of Context. This is article 3 of the series, and covers the topic of Contract.
Contract
Once a message has been defined and agreed to as an integration mechanism, all stakeholders in that integration have legitimate expectations of that message contract. Primarily, these expectations includes the agreed-to level of compatibility of future messages, and what the process will be when the contract needs to change. These guarantees will often be such that messages can add fields as needed, but cannot remove, move, or change the nature of existing fields without significant coordination with the stakeholders. This can have a severe impact on the agility of our dev teams as they try to move fast and iterate with their designs.
In order to keep implementations flexible, there should be an isolation layer between the internal representation (Domain Model) of any message, and the more public representation (Integration Model). This way, the developers can change the internal representation with only limited restrictions, so long as as the message remains transformationally compatible with the integration message, and the transformation is modified as needed so that no change is seen by the integration consumers. The two representations may take different forms, such as one in a database, the other in a Kafka topic. The important thing is that the developers can iterate quickly on the internal representation when they need to.
The Eventually Consistent example from the earlier Consistency topic (included above) shows such an isolation layer since the WorkOrders DB holds the internal representation of the message, the Kafka Connect connector is the abstraction that performs the transformation as needed, and the topic that the connector produces data to is the integration path. In this model, the development team can iterate on the model inside the DB without necessarily needing to make changes to the more public Kafka topic.
We need to take great care to defend these internal streams and keep them isolated. Ideally, only 1 service should ever write to our domain model, and only internal services, owned by the same small development team, should read from it. As soon as we allow other teams into our domain model, it becomes an integration model whether we want it to be or not. Even other internal services should use the public representation if it is reasonable to do so.
Similarly, our services should make proper use of upstream integration models. We need to understand what level of compatibility we can expect and how we will be notified of changes. We should use these data paths as much as possible to bring external data locally to our services, in exactly the form that our service needs it in, so that each of our services can own its own data for both reliability and efficiency. Of course, these local stores must be read-only. We need to publish change requests back to the System of Record to make any changes to data sourced by those systems.
We should also do everything we can to avoid making assumptions about data we don't own. Assuming a data type, particular provenance, or embedded-intelligence of a particular upstream data field will often cause problems in the future because we have created unnecessary coupling. As an example, it is good practice to treat all foreign identifiers as strings, even if they look like integers, and to never make assumptions along the lines of "...those identifiers will always be increasing in value". While these may be safe assumptions for a while, they should be avoided if they reasonably can be to prevent future problems.
Goals of the Conversation
Development teams should have conversations around Contract that are primarily focused around creating processes that define any integration contracts for both upstream and downstream services, and serve to defend their internal data representations against any external consumers. These conversations should include answering questions like:
- How will we isolate our internal data representations from those of our downstream consumers?
- What types of compatibility guarantees are our tools and practices capable of providing?
- What procedures should we have in place to monitor incoming and outgoing contracts for compatibility?
- What should our procedures look like for making a change to a stream that has downstream consumers?
- How can we leverage upstream messaging contracts to further reduce the coupling of our systems to our upstream dependencies?
Next Up - Chaos
In the next article of this series we will look at Chaos and how we can use both thought and physical experiments to help improve our system's reliability.
Tags: agile antipattern apache-kafka api apps architecture aspdotnet ci_cd coding-practices coupling event-driven microservices soa
The Critical C's of Microservices - Consistency
Posted by bsstahl on 2022-12-19 and Filed Under: development
"The Critical C's of Microservices" are a series of conversations that development teams should have around building event-driven or other microservice based architectures. These topics will help teams determine which architectural patterns are best for them, and assist in building their systems and processes in a reliable and supportable way.
The "Critical C's" are: Context, Consistency, Contract, Chaos, Competencies and Coalescence. Each of these topics will be covered in detail in this series of articles. Article 1 of the 6 was on the subject of Context. This is article 2 of the series, and covers the topic of Consistency.
Consistency
The world is eventually consistent. The sooner we get that through our heads and start expecting our systems to act like it, the fewer problems, we will have. In fact, I'll go out on a limb and say that most of the problems in building and maintaining microservice architectures are the result of failing to fully embrace eventual consistency from the start.
Data is consistent when it appears the same way when viewed from multiple perspectives. Our systems are said to be consistent when all of the data them is consistent. A system with strong consistency guarantees would be one where every actor, anywhere in the context of the application, would see the exact same value for any data element at any given time. A system that is eventually consistent is one with strong guarantees that the data will reach all intended targets, but much weaker guarantees about how long it might take to achieve data consistency.
Full consistency is impossible in a world where there is a finite speed of causation. Strong consistency can only be achieved when every portion of the application waits until the data is fully consistent before processing. This is generally quite difficult unless all of the data is housed in a single, ACID compliant data store, which of course, is a very bad idea when building scalable systems. Strong consistency, or anything more stringent than eventual consistency, may be appropriate under very specific circumstances when data stores are being geo-replicated (assuming the database server is designed for such a thing), but can cause real difficulties, especially in the areas of reliability and scalability, when attempted inside an application.
We should challenge demands for higher levels of consistency with rigor. Attempts to provide stronger consistency guarantees than eventual will cause far more problems than they are worth.
We will always need to look for situations where consistency problems might occur (i.e. race-conditions), expect them to happen, and try to design our systems in such a way as to not need to worry about them. Race conditions and other consistency problems are smells. If you are in a situation where you are might see these types of problems, it may indicate that you need to reevaluate the details of your implementation.
As an example, let's take a look at the 3 implementation diagrams below. In all 3 of these implementations, the goal is to have the WorkOrder service modify a WorkOrder and have the changes published onto a topic for downstream consumers. If a WorkOrder already exists, it needs to be loaded from the data store so that appropriate updates can be made. As you will see, the 3 implementations have very different reliability characteristics.
Implementation 1 - Dual-Write: In the 1st example, the WorkOrder service attempts to both update the entity in the database, and publish the changes to the topic for downstream consumers. This is probably an attempt to keep both the event and the update consistent with one another, and is often mistaken for the simplest solution. However, since it is impossible to make more than 1 reliable change at a time, the only way this implementation can guarantee reliability is if the 1st update is done in an idempotent way. If that is the case, in the circumstances where the 2nd update fails, the service can roll the command message back onto the original topic and try the entire change again. Notice however that this doesn't guarantee consistency at all. If the DB is updated first, it may be done well before the publication ever occurs, since a retry would end up causing the publication to occur on a later attempt. Attempting to be clever and use a DB transaction to maintain consistency actually makes the problem worse for reasons that are outside of the scope of this discussion. Only a distributed transaction across the database and topic would accomplish that, and would do so at the expense of system scalability.
Implementation 2 - Race Condition: In the 2nd example, the WorkOrder service reads data from the DB, and uses that to publish any needed updates to the topic. The topic is then used to feed the database, as well as any additional downstream consumers. While it might seem like the race-condition would be obvious here, it is not uncommon to miss this kind of systemic problem in a more complicated environment. It also can be tempting to build the system this way if the original implementation did not involve the DB. If we are adding the data store, we need to make sure data access happens prior to creating downstream events to avoid this kind of race condition. Stay vigilant for these types of scenarios and be willing to make the changes needed to protect the reliability of your system when requirements change.
Implementation 3 - Eventually Consistent: In the 3rd example, the DB is used directly by both the WorkOrder service, and as the source of changes to the topic. This scenario is reliable but only eventually consistent. That is, we know that both the DB and the topic will be updated since the WorkOrder service makes the DB update directly, and the reliable change feed from the DB instantiates a new execution context for the topic to be updated. This way, there is only a single change to system state made within each execution context, and we can know that they will happen reliably.
Another example of a consistency smell might be when end-users insist that their UI should not return after they update something in an app, until the data is guaranteed to be consistent. I don't blame users for making these requests. After all, we trained them that the way to be sure that a system is reliable is to hit refresh until they see the data. In this situation, assuming we can't talk the users out of it, our best path is to make the UI wait until our polling, or a notification mechanism, identifies that the data is now consistent. I think this is a pretty rude thing to do to our users, but if they insist on it, I can only advise them against it. I will not destroy the scalability of systems I design, and add complexity to these systems that the developers will need to maintain forever, by simulating consistency deeper inside the app. The internals of the application should be considered eventually consistent at all times and we need to get used to thinking about our systems in this way.
Goals of the Conversation
Development teams should have conversations around Consistency that are primarily focused around making certain that the system is assumed to be eventually consistency throughout. These conversations should include answering questions like:
- What patterns and tools will we use to create systems that support reliable, eventually consistent operations?
- How will we identify existing areas where higher-levels of consistency have been wedged-in and should be removed?
- How will we prevent future demands for higher-levels of consistency, either explicit or assumed, to creep in to our systems?
- How will we identify when there are unusual or unacceptable delays in the system reaching a consistent state?
- How will we communicate the status of the system and any delays in reaching a consistent state to the relevant stakeholders?
Next Up - Contract
In the next article of this series we will look at Contract and how we can leverage contracts to make our systems more reliable while still maintaining our agility.
Tags: agile antipattern apache-kafka api apps architecture aspdotnet ci_cd coding-practices coupling event-driven microservices soa
The Critical C's of Microservices - Context
Posted by bsstahl on 2022-12-12 and Filed Under: development
"The Critical C's of Microservices" are a series of conversations that development teams should have around building event-driven or other microservice based architectures. These topics will help teams determine which architectural patterns are best for them, and assist in building their systems and processes in a reliable and supportable way.
The "Critical C's" are: Context, Consistency, Contract, Chaos, Competencies and Coalescence. Each of these topics will be covered in detail in this series of articles, starting with Context.
Update: Part 2 of this series, Consistency is now available.
Context
The Execution Context
The execution context is the unit of work of all services. It represents the life-cycle of a single request, regardless of the details of how that request was received. So, whether an HTTP web request, or an asynchronous message from Apache Kafka or Azure Service Bus, the context we care about here is that of a single service processing that one message. Since, for reasons that will be discussed in a future article, there is no way to reliably make more than one change to system state within a single execution context, we must defend this context from the tendency to add additional state changes which would damage the reliability of our services.
There are generally only two situations where it is ok to make more than one change to system state in a single execution context:
When the first change is idempotent so we can rollback the message and try again later without bad things happening due to duplication. An example of this is a database Upsert where all of the data, including keys, is supplied. In this case, the 1st time we execute the request, we might insert the record in the DB. If a later change fails in the same context and we end up receiving the same message a 2nd time, the resulting update using the same data will leave the system in the same state as if the request was only executed once. Since this idempotent operation can be executed as many times as necessary without impacting the ultimate state of the system, we can make other changes after this one and still rollback and retry the request if a subsequent operation fails, without damaging the system. Services that are idempotent are much easier to orchestrate reliably, so much so that idempotence is considered a highly-desireable feature of microservices.
When the second change is understood to be less-reliable. An example of this is logging. We don't want to fail a business-process due to failures in logging, so we accept that our logging, and certain other technical processes, may be less-reliable than our business processes. It is rarely ok for a business process to be less-reliable in this way. Implementations that make certain business features less-reliable should be identified, documented, and discussed with an eye toward repaying what is likely to be technical debt.
Avoiding Dual-Writes
Ultimately, to maintain the reliability of our systems, we must be sure we are never trying to make more than one reliable change to system state in a single execution context. This is a very different way of thinking than most developers are used to. In fact, I would say it is the opposite of how many of us have been taught to think about these types of problems. Developers value simplicity, and rightfully so. Unfortunately, problems where we already have a service running that can host logic we need to add, make it seem like the simplest solution is to just "add-on" the new logic to the existing code. The truth of the matter is far different. Let's look at an example:
In these drawings we start with a RESTful service that updates a database and returns an appropriate response. This service makes only 1 change to system state so it can be built reliably.
The next two drawings show ways of implementing a new requirement for the system to update a downstream dependency, say a Kafka topic, in addition to the database update. The default for many Technologists would be to just to add-on inside the service. That is, they might suggest that we should have the service update both the database and the topic as shown in the second drawing. This would be an example of the Dual-Writes Anti-Pattern and would hurt both system reliability and supportability.
Instead, the simplest solution that doesn't harm our system's reliability is actually to trigger the downstream action off of the DB update. That is, we can use the Outbox Pattern or if the database supports it, Change Data Capture or a Change Feed to trigger a secondary process that produces the event message. Adding a deployment unit like this might make it feel like a more complicated solution, however it actually reduces the complexity of the initial service, avoids making a change to a working service, and will avoid creating reliability problems by not performing dual-writes.
There are a few things to note here regarding atomic database transactions. An ACID-compliant update to a database represents a single change to system state. If we could make fully ACID-compliant changes across multiple data stores, or other boundaries like web services, the Dual-Writes Anti-Pattern would be much less of a problem. Unfortunately, distributed transactions cannot be used without severely impacting both scalability and performance and are not recommended. It should also be noted that, when talking about only 2 state changes, some threats to reliability may be reduced by being clever with our use of transactions. However, these tricks help us far less than one might think, and have severely diminishing returns when 3 or more state-changes are in-scope. Transactions, while good for keeping local data consistent, are not good for maintaining system reliability and are horrible for system scalability.
Goals of the Conversation
Development teams should have conversations around Context that are primarily focused around the tools and techniques that they intend to use to avoid the Dual-Writes Anti-Pattern. These conversations should include answering questions like:
What database technologies will we use and how can we leverage these tools to create downstream events based on changes to the database state?
Which of our services are currently idempotent and which ones could reasonably made so? How can we leverage our idempotent services to improve system reliability?
Do we have any services right now that contain business processes implemented in a less-reliable way? If so, pulling this functionality out into their own microservices might be a good starting point for decomposition.
What processes will we as a development team implement to track and manage the technical debt of having business processes implemented in a less-reliable way?
What processes will we implement to be sure that any future less-reliable implementations of business functionality are made with consideration and understanding of the debt being created and a plan to pay it off.
What processes will we implement to be sure that any existing or future less-reliable implementations of business functionality are documented, understood by, and prioritized by the business process owners.
Next Up - Consistency
In the next article of this series we will look at Consistency, and see how Eventual Consistency represents the reality of the world we live in.
Tags: agile antipattern apache-kafka api apps architecture aspdotnet ci_cd coding-practices coupling event-driven microservices soa
Event Storming
Posted by bsstahl on 2021-09-21 and Filed Under: development
What is Event Storming?
Event storming is a process for building a model of a problem domain by analyzing the domain from a business perspective. The results of an Event Storming session include a logical model of the domain, as seen by the business owners, that is extremely useful to engineers in defining software systems for that domain. Event Storming follows a four-step process to produce a model of the system that is based on Domain Events, historical facts about the business process that are relevant to the business owners.
The process occurs on a whiteboard surface, ideally in-person but often virtually. Sticky-notes of various colors are used to represent elements of the domain and the model is built-up by everyone on the team, regardless of their role. The exercise starts as a brainstorming session of a sort, then evolves until it results in a model of the business process.
The Goals of Event Storming
Produce a model of the domain that is valuable to both the business owners and the engineers who are building software systems for that domain.
Document a Ubiquitous Language for the domain that represents the shared set of terms used by everyone working in that domain.
Level everyone in the domain on the same understanding of what problems are being solved so that all players have a strong working background.
Important Terminology
Note: The items below represent the different elements of the model we wish to produce. Each type of item is represented by a different color of sticky-note on our design surface. Terms not color-coded exist in the context of Domain Driven Design and may be used during the session, but will not be modeled on the board.
Aggregate
An aggregate is a cluster of domain objects that can be treated as a single unit. An example may be an order and its line-items. These objects will likely be created from distinct classes when built within the context of a software system, but it is useful to treat them as a single aggregate for the purposes of modeling the domain. That is, it is simpler to think about an Order with all of its line-items as a single unit within the model. Additionally, some objects will be able to be viewed from multiple perspectives. If we model a User which contains a collection of Roles, we could also see a Role as having a collection of users. The User and Role objects are each separate aggregates and can be modeled separately depending on the context, even though they represent the same relationship and a collection of one object likely exists on the other. The primary object within each Aggregate is known as the Aggregate Root which is used to describe the aggregate as a whole.
Bounded Context
A Bounded Context is a logical area within a system where business processes are implemented, a ubiquitous language is applied, and certain terms make very clear and specific sense. A term can have exactly one meaning within a bounded context, a meaning which may not be exactly the same as that same term in another bounded context. As an example, let's look at a Customer object. Bounded Contexts that exist in a state after a user has logged-in to the system might have a User object or UserId property associated with it. Meanwhile, this User object or UserId may not exist in a Bounded Context that exists purely pre-login, or where login status has no bearing on the functionality.
Business Process (dark purple stickies)
The business rules and logic required to handle a Command or a Domain Event. A business process may create one or more domain events, or may reject the command outright.
Command (light blue stickies)
An instruction submitted by a user, usually through a view, that typically results in the creation of one or more Domain Events. Commands may be rejected by the Business Processes that handle them, perhaps due to permissions or data validation issues. If a command is rejected, it may or may not result in one or more domain events representing the submission and/or rejection of that command.
Domain Event (orange stickies)
Domain Events are the keys to Event Storming. A Domain Event is something that happened in the domain that is relevant to the business. Events are always written in the past tense since they represent historical facts that cannot change. Examples of domain events include “vehicle locked” and “delivery scheduled.” Though the term event is somewhat overloaded, these Domain Events should not be conflated with the messages that can be used to represent them. While many Domain Events will eventually be represented by event messages of some form, many will not. Event Storming is an implementation agnostic process, thus there is no prescription as to how events are communicated. Domain events, in this context, exist entirely as historical facts and nothing more.
External System (light purple stickies)
A third-party service provider such as a payment gateway or shipping company. These services may utilize View Models within our system and may create Domain Events that trigger Business Processes.
Questions or Risks (pink or red stickies)
We use pink stickies to identify items that are unclear, overly complex or have unanswered questions or risks. Callout concerns with these pink stickies liberally whenever there is something that should be known about an item or area of the model. Sections of the model where there are a lot of pink sticky notes may require additional attention.
Ubiquitous Language
A set of terms describing the domain that are meaningful to the business team. These are the terms that are used by all domain team members to identify and communicate about activities of the system. A sample excerpted from a Ubiquitous Language document is shown below.
User/Actor (yellow stickies)
A person who interacts with the system. These interactions will usually take the form of executing a Command, typically through a view populated by a View Model.
View / Read Model (light green stickies)
A presentation of data that Users, Business Processes, and External Systems interact with to carry out a task in the system. As an example, an external system may call a REST service within the domain that returns data that we represent with a View Model.
The Event Storming Process
Each step builds on the previous steps to result in a cohesive picture of the domain from a business perspective. This view of the system has proven to be extremely useful to engineers in defining software systems for that domain.
1 - Collect Domain Events
The first step in Event Storming is to brainstorm the Domain Events that occur during the course of the business process. These events should be described on orange sticky notes using verbs in the past-tense. Each sticky should represent a single event and should be placed on the modeling surface in roughly chronological order. Since this is brainstorming, we should limit the amount of time we spend discussing and refining each event. There will be more time for that in step 2. However, we do want to have enough discussion to trigger thoughts on additional events which often result from these conversations.
Any events where there are unresolved questions or concerns should be marked with a pink sticky note indicating the question or risk. In this first step we should make liberal use of these stickies.
2 - Refine Domain Events
Once we have thrown all of the events we can think of on the board, we can start to refine those events. In step 1 we were brainstorming so multiple side-conversations may have been occurring at various times. In step 2 we want to bring the entire team together in a single conversation about each event. This is where we drill-in to the details of the events, and modify our model as appropriate.
We begin by walking through the timeline, usually from left to right, but jumping around as needed to best navigate the domain. Each event should be discussed with all participants to be certain that the entire team understands the details of the event. Other things to discuss include whether or not the event is in the proper place on the timeline, if there are any additional events that may be related to the one being discussed, if any duplicate events should be combined, if any of the questions or risks identified in the pink stickies can be resolved, and if there are additional questions or concerns that should be called-out using pink stickies.
Finally, for each event, be certain that any important terms are documented in the Ubiquitous Language document and that we are not using synonyms of the documented terms to describe our events. We always want to use the correct terminology to describe all aspects of our domain.
3 - Track Causes
In step 3, things start to get really interesting. The goal of this step is to determine the causes of each of the Domain Events. There are three causes of domain events: User actions, Business Processes, and External Systems. For each event we need to identify the interactions surrounding it, including what triggers it, and what downstream events it may cause. This step, once completed, results in a model that looks like a series of flows.
User Actions
Users typically trigger events via View Models and Commands. A view model may be displayed to the user from which they issue a command to take an action. This command may directly result in a Domain Event, but is more likely to be consumed by a Business Process which may validate the command before either rejecting it or executing logic that results in a Domain Event.
Business Processes
Business Processes often produce one or more events during the execution of their logic. An example might be that when a question is answered by a user in a StackOverflow type Q & A domain, it results in a “Question Answered” event. This event may be consumed by a business process to notify subscribed users resulting in one or more “User Notified” events. Business Processes often make use of Read Models to provide additional information as to the state of the system.
External Systems
External Systems are business processes that exist outside of the domain, and as such, have a smaller surface with which to interact with our systems. These processes may utilize Read Models from within our domain to gather information and are usually modeled as creating Domain Events to interact with the system. These interactions are typically modeled as Domain Events because most external system events are seen as important historical facts to our business. After all, if they weren’t important to our business domain experts, why would our systems care about them at all? This is not a hard and fast rule however and your domain may differ. It is conceivable that external logic could issue Commands to internal systems, though it seems more reasonable that those would be viewed as Domain Events.
4 - Aggregation (Software Modeling)
The final step is all about grouping our new logic flows around the Aggregates they act upon and describing the communications between these newly identified sub-domains.
As you recall, an Aggregate is an object graph treated as a single object and identified by the Aggregate Root. In this step we identify the aggregates in our system, and then group each of the flows from step 3 by the Aggregate they act upon. At the same time, we can draw lines between the groups to identify the communications across these boundaries. This will result in the final model of this process, a set of flows grouped by their Aggregate into subdomains that can often be viewed as a good proxy for a microservice.
Additional Resources
- Intro to Event Storming - Lightning Talk Video
- Event Storming Presentation - Slide Deck
- Alberto Brandolini - Creator of Event Storming - On Why it Should be Done In-Person
- Adam Dymitruk on Event Modeling - a similar (more expansive) system
Conclusion
The practice of Event Storming offers a dynamic and inclusive approach to understanding and modeling business domains, bridging the gap between technical and non-technical stakeholders. By fostering collaboration, promoting a shared language, and visualizing the flow of Domain Events, teams can unlock a deeper comprehension of the business processes at hand. This method not only streamlines the development process but also ensures that the resulting software systems are precisely aligned with business objectives. As we've seen, Event Storming stands out as an invaluable tool in the arsenal of modern software development practices, embodying principles of agility, domain-driven design, and team cohesion to tackle complex domain problems effectively.
Tags: agile architecture coding-practices ddd event event-driven
Unit Testing the Data Tier
Posted by bsstahl on 2007-08-23 and Filed Under: development
Recently, both Jeffrey Polermo and Scott Bellware have written posts on codebetter.com positing that testing the Database should be avoided when doing unit testing. Specifically, Polermo points out that
Unit testing, by common definition, excludes external dependencies. It's not a unit test if we reach out and touch things.
While this may be a nice ideal, in reality it simply does not turn out to be the best way to do things in the majority of situations. Of course, to be fair, every situation is different and I'm sure there are many circumstances where it is better to pull-out database testing into integration tests or similar. In fact, there are perfectly valid reasons why we might not want to call it a unit-test if we test the database. However, for the majority of software projects (i.e. the 80% use-case), I belive it is not only legitimate, but best-practice, to test the database with our unit tests.
To understand the primary reasoning here, we need to go back to the fundamentals and look at our logical view of this 80% use-case software system.
The drawing illustrates many of the systems we create today in .NET. Of course, not all systems will fit into this model, but it certainly represents the classic 3-tier architecture used by so many of our projects. As this drawing shows, our data-access objects, which are often just thin wrappers over stored procedures, perhaps containing some ORM logic, are really part of the data-services layer. Even though these objects may physically reside alongside the business-layer objects, they really belong to the data-services. Thus, the assertion that we cross boundaries by testing the database when we test the data-services "unit" is not, in my mind, a valid concern. Yes, the tests will make out-of-process calls in getting to the database, and we will suffer a performance penalty as a result, but the fact remains that the database is not a dependency of the data-access objects, it is an integral part of that layer. Thus, in order to test that layer, we must test the database.
From a practical standpoint, this view of the application works out best in terms of testing it since the data-access objects are generally so thin. What is the point of testing those objects in isolation since they are basically wrappers most of the time? It is sometimes appropriate to write some tests for these objects on their own if they contain ORM type logic that can be tested as a unit, but for the most part, when we test the data-layer, what we want to test is that the proper data is returned. Validating that the proper data is returned from the data-tier requires testing the entire layer, including the database. Another factor here is that the database itself cannot generally be tested without some form of .NET object interface. As an example, if we were to try and write a unit test for a stored procedure in nUnit or VS Team System, we would need to have the same data-access code in our test, as we have in our data-tier object. Thus, it only makes sense to test those items as one unit. Perhaps down the road, since SQL server now has its own CLR, we may be able to do more testing of the database objects at that level and not need data-access objects. When that occurs, we should definately revisit our best-practices. But for now it is clear that the best way to test data-access is to test the data-services layer as a unit.
Please do not think that in any way I am suggesting we need to test the database in the same tests that are used for the business-layer objects. That would be a clear violation of the separation-of-concerns discussed by both Polermo and Bellware as well as many others and would best be described as an integration test because it crosses the boundaries in the diagram above. We should definately isolate the layers of our applications from each other in order to accurately test them. What I am saying is that the isolation of the data-tier should occur between the business-tier and the data-tier on the diagram. Thus, testing of the data-access objects includes testing of the database objects. The question then really becomes, how do we unit-test the data-services layer so that the tests execute as quickly as possible, do not have dependancies on existing data so that changes to the data cause tests to fail, yet still accurately and completely test that unit. I am attempting to put together a list of best-practices in this area and will make that the subject of a future post.